Developer Guide
Complete guide for developers using Argy: Argy Code, LLM Gateway, Golden Paths, and IDE integration.
This guide walks you through the daily use of Argy as a developer.
Argy Code — Your AI Coding Assistant
Argy Code is an autonomous coding agent that helps you generate, test, and maintain code that complies with your organization's standards.
Installation
VS Code
- Open VS Code
- Go to Extensions (Ctrl+Shift+X)
- Search for "Argy Code"
- Click Install
- Restart VS Code
JetBrains (IntelliJ, WebStorm, PyCharm...)
- Open your JetBrains IDE
- Go to Settings → Plugins
- Search for "Argy Code" in the Marketplace
- Click Install
- Restart the IDE
CLI
# Installation via npm
npm install -g @argy/code-cli
# Or via Homebrew (macOS)
brew install argy/tap/argy-code
# Verify installation
argy-code --version
Configuration
Authentication
# Log in to Argy
argy-code login
# This will open your browser for SSO authentication
# Once logged in, the token will be stored locally
Project Configuration
Create a .argy/config.yaml file at the root of your project:
# .argy/config.yaml
project:
name: "my-project"
product_id: "prod_xxx" # Argy product ID
# Business context for AI
context:
# Golden Paths to use
golden_paths:
- "nodejs-microservice"
- "react-frontend"
# Documentation to index for RAG
docs:
- "./docs/**/*.md"
- "./README.md"
# Files to ignore
ignore:
- "node_modules/**"
- "dist/**"
- ".git/**"
# Governance rules
governance:
# Require confirmation before commits
require_commit_confirmation: true
# Run tests before commit
run_tests_before_commit: true
# Scan for secrets
scan_secrets: true
Daily Usage
Basic Commands
# Start an interactive session
argy-code chat
# Ask a quick question
argy-code ask "How do I implement JWT authentication?"
# Generate code
argy-code generate "Create a REST endpoint for users"
# Analyze existing code
argy-code analyze ./src
# Run tests
argy-code test
# Create a Pull Request
argy-code pr "Add user endpoint"
Interactive Chat Mode
$ argy-code chat
🤖 Argy Code v1.0.0 - Interactive session
📁 Project: my-project (prod_xxx)
🔗 Golden Paths: nodejs-microservice, react-frontend
> Create an email notification service
📋 Action plan:
1. Create file src/services/email.service.ts
2. Add types in src/types/email.types.ts
3. Create tests in tests/email.service.test.ts
4. Update configuration file
⚠️ This action will create 4 files. Confirm? [y/N]
IDE Integration
In VS Code or JetBrains, use the shortcuts:
| Action | VS Code | JetBrains |
|---|---|---|
| Open Argy Code | Ctrl+Shift+A | Ctrl+Shift+A |
| Generate code | Ctrl+Shift+G | Ctrl+Shift+G |
| Explain selected code | Ctrl+Shift+E | Ctrl+Shift+E |
| Refactor | Ctrl+Shift+R | Ctrl+Shift+R |
| Fix errors | Ctrl+Shift+F | Ctrl+Shift+F |
Agent Workflow
Argy Code follows a governed workflow to ensure quality and compliance:
InitSession → LoadContext → Plan → PolicyPreCheck → Act → Observe → Validate → Deliver
↑ │
└────────────────── Iteration Loop ──────────────────────┘
Key steps:
- InitSession: Authentication and configuration loading
- LoadContext: Retrieve Golden Paths and RAG indexing
- Plan: Create action plan
- PolicyPreCheck: Verify policies before execution
- Act: Execute actions (writing, commands)
- Observe: Analyze results
- Validate: Run tests and quality gates
- Deliver: Commit, PR, or delivery
LLM Gateway — Governed AI API
The LLM Gateway allows you to access language models (GPT-4, Claude, Gemini...) in a secure and governed manner.
Authentication
# Get your token
argy-code token
# Or via API
curl -X POST https://api.argy.cloud/v1/auth/token \
-H "Content-Type: application/json" \
-d '{"email": "you@company.com", "password": "..."}'
Using the API
The API is compatible with the OpenAI format, making integration easy:
// TypeScript / JavaScript
import OpenAI from 'openai';
const client = new OpenAI({
apiKey: process.env.ARGY_TOKEN,
baseURL: 'https://llm.argy.cloud/v1',
defaultHeaders: {
'X-Tenant-Id': process.env.ARGY_TENANT_ID,
},
});
const response = await client.chat.completions.create({
model: 'auto', // Automatic selection of the best model
messages: [
{ role: 'system', content: 'You are a development assistant.' },
{ role: 'user', content: 'Explain the Repository pattern.' },
],
});
console.log(response.choices[0].message.content);
# Python
from openai import OpenAI
client = OpenAI(
api_key=os.environ["ARGY_TOKEN"],
base_url="https://llm.argy.cloud/v1",
default_headers={
"X-Tenant-Id": os.environ["ARGY_TENANT_ID"],
},
)
response = client.chat.completions.create(
model="auto",
messages=[
{"role": "system", "content": "You are a development assistant."},
{"role": "user", "content": "Explain the Repository pattern."},
],
)
print(response.choices[0].message.content)
Available Models
| Model | Provider | Use Case | Cost (credits/1M tokens) |
|---|---|---|---|
auto | Auto | Automatic selection | Variable |
gpt-4o | OpenAI | Complex tasks | 15 |
gpt-4o-mini | OpenAI | Simple tasks | 0.6 |
claude-3-5-sonnet | Anthropic | Code, analysis | 15 |
claude-3-5-haiku | Anthropic | Fast, economical | 1 |
gemini-2.0-flash | Multimodal | 0.4 |
Check Your Quotas
# Via CLI
argy-code usage
# Via API
curl https://llm.argy.cloud/v1/usage \
-H "Authorization: Bearer $ARGY_TOKEN" \
-H "X-Tenant-Id: $ARGY_TENANT_ID"
Response:
{
"credits_used": 45.2,
"credits_limit": 100,
"credits_remaining": 54.8,
"period": "2025-01",
"usage_by_model": {
"gpt-4o": 30.5,
"claude-3-5-sonnet": 14.7
}
}
Golden Paths — Organization Standards
Golden Paths are templates and configurations pre-approved by your Platform Engineering team.
List Available Golden Paths
argy-code golden-paths list
# Output:
# ┌─────────────────────────┬─────────────────────────────────────┐
# │ Name │ Description │
# ├─────────────────────────┼─────────────────────────────────────┤
# │ nodejs-microservice │ Node.js microservice with Express │
# │ react-frontend │ React application with Vite │
# │ python-fastapi │ Python API with FastAPI │
# │ terraform-azure │ Azure infrastructure with Terraform │
# └─────────────────────────┴─────────────────────────────────────┘
Use a Golden Path
# Create a new project from a Golden Path
argy-code init --golden-path nodejs-microservice my-new-service
# Apply a Golden Path to an existing project
argy-code apply-golden-path nodejs-microservice
Check Compliance
# Verify that the project follows Golden Paths
argy-code compliance check
# Output:
# ✅ File structure compliant
# ✅ Dependencies up to date
# ⚠️ ESLint configuration missing
# ❌ Insufficient unit tests (coverage: 45%, required: 80%)
CI/CD Integration
GitHub Actions
# .github/workflows/argy.yml
name: Argy CI
on:
pull_request:
branches: [main]
jobs:
argy-check:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Setup Argy Code
uses: argy/setup-argy-code@v1
with:
token: ${{ secrets.ARGY_TOKEN }}
tenant-id: ${{ secrets.ARGY_TENANT_ID }}
- name: Check Compliance
run: argy-code compliance check --strict
- name: Run AI Code Review
run: argy-code review --pr ${{ github.event.pull_request.number }}
GitLab CI
# .gitlab-ci.yml
argy-check:
image: ghcr.io/argy/code-cli:latest
stage: test
script:
- argy-code login --token $ARGY_TOKEN
- argy-code compliance check --strict
- argy-code review --mr $CI_MERGE_REQUEST_IID
only:
- merge_requests
Best Practices
1. Always Review the Plan
Before executing an action, Argy Code shows you a plan. Take time to read it:
> Refactor the authentication service
📋 Action plan:
1. Analyze src/services/auth.service.ts
2. Extract JWT logic into src/utils/jwt.ts
3. Create tests for new functions
4. Update imports
⚠️ This action will modify 3 files and create 2. Confirm? [y/N]
2. Use Business Context
Provide context to your requests for better results:
# ❌ Too vague
> Create an API
# ✅ With context
> Create a REST API to manage customer orders,
> with CRUD endpoints and data validation.
> Use the nodejs-microservice Golden Path.
3. Iterate in Small Steps
Rather than asking for a complete feature, proceed step by step:
# Step 1
> Create the data model for orders
# Step 2
> Add the repository for orders
# Step 3
> Create the service with business logic
# Step 4
> Add the REST endpoints
4. Always Run Tests
# Before committing
argy-code test
# Or automatically
argy-code commit --run-tests
Troubleshooting
Authentication Error
# Reset the token
argy-code logout
argy-code login
Quota Exceeded
# Check usage
argy-code usage
# Contact your administrator to increase quotas
Agent Not Responding
# Check connection
argy-code health
# Check logs
argy-code logs --tail 50